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Major pathways of Atlantic water inflow

~----|..Currents; .

NAC: North Atlantic Curreﬁ)t
CSC: Continental Slope Current
NwASC: Norwegian Slope Qurrent

¢ The Atlantic inflow through
the FS channel consists of
two seperate flow, NAC &
CSC. And NwWASC is a
continuation of CSC.

Norv:vegian Sea

¢ The mean currents of CSC
and NwASC are barotropic
and following topography,
with increasing speed and
) transport (Huthnance and
B S EL 7 Gould,1989; Orvik et al., 2001).

® The dynamics of the
Atlantic inflow is not well
known.
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Motivation

As the Atlantic inflow proceeds northward, its density increases
mainly due to losing heat from ocean to atmosphere.

In a context of geostrophic flow, density variation along a slope
will lead to a transformation between a barotropic flow and a
baroclinic flow.

Heat flux to

We expect that this theory Atmosphere
can describe dynamics of
the Atlantic inflow along the
slope.

Walin et al. 2004



Theroy

* Assuming geostrophic and hydrostatic balance,
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Baroclinic and barotropic transformation

* Assuming p» = po(H) and f-plane, then
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Formula of barotropic transport change
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Hydrographic Data

CTD data at
approximately
the same period
of four sections
across the slope
are from
Hydrobase 2,
ICES and BODC.

The bottom
observation is
defined as an
observation
with
instrumental
depth less than
20 meters above
the floor.



Depth(m)

Hydrographic Data
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Spatialtemporal distribution of near-bottom data

CTD data at
approximately
the same period
of four sections
across the slope
are from
Hydrobase 2,
ICES and BODC.

The bottom
observation is
defined as an
observation
with
instrumental
depth less than
20 meters above
the floor.



Potential temperature(®C)
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Water mass properties along the slope

T T 10 T T T T T T T
. 81 o . 81 e
o FIM rﬁ?‘ o FIM wh s
& o} On * rZ“[_ﬁ
* * ]
o
o] .
72
*
1%
*
g ]
* @t
,ﬁ9
rﬁ’c‘a ]
Vv
K
35 351 352 353 354 355 35
Salinity Salinity
200-500m 500-700m



Density(kg/ni')
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Bottom densities across the slope
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Bottom density in each
section is assumed as a
linear function of water
depth.

The function slope is
different at the four
sections.

Transport change
between two
neighboring sections are
calculated from the
fitted data.



Barotropic transport change between two
neighboring sections
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Barotropic transport change between two
neighboring sections

AT(Sv) *Barotropic transport
increases along the slope,
qualitively illustrating

---- the Atlantic inflow
structure along the slope.

300m-
500m

pem— , *The results are
oo 5.54(?) 0.19 0.78 comparable with

observations, except on
the slope of 500m-700m
from S1-FIM.



Where does the geostrophy break?

e Along 700m and 600m
isobath before and after
the Wyville-Thomson
Ridge,

AU = 0(107%), AL = 0104
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Conclusion

e Geostrophy can describe the dynamics of
Atlantic inflow along the slope shallower than
around 500m. The simple linear theory explains
well why both the speed and transport of the
inflow increases along the slope.

e Geostrophy breaks down at the slope deeper
than around 600m at the area of Wyuville-
Thomson Ridge.
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